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Abstract

Objectives Aromatase (CYP19) inhibitors have emerged as promising candidates for the
treatment of estrogen-dependent breast cancer. In this study, a series of androstenedione
derivatives with CYP19 inhibitory activity was subjected to a molecular docking study
followed by quantitative structure–activity relationship (QSAR) analyses in search of ideal
physicochemical characteristics of potential aromatase inhibitors.
Methods The QSAR studies were carried out using both two-dimensional (topological,
and structural) and three-dimesional (spatial) descriptors. We also used thermodynamic
parameters along with 2D and 3D descriptors. Genetic function approximation (GFA) and
genetic partial least squares (G/PLS) were used as chemometric tools for QSAR modelling.
Key findings The docking study indicated that the important interacting amino acids in the
active site were Met374, Arg115, Ile133, Ala306, Thr310, Asp309, Val370, Leu477 and
Ser478. The 17-keto oxygen of the ligands is responsible for the formation of a hydrogen
bond with Met374 and the remaining parts of the molecules are stabilized by the hydropho-
bic interactions with the non-polar amino acids. The C2 and C19 positions in the ligands are
important for maintaining the appropriate orientation of the molecules in the active site. The
results of docking experiments and QSAR studies supported each other.
Conclusions The developed QSAR models indicated the importance of some Jurs param-
eters, structural parameters, topological branching index and E-state indices of different
fragments. All the developed QSAR models were statistically significant according to the
internal and external validation parameters.
Keywords CYP19; docking; GFA; G/PLS; QSAR

Introduction

Non-communicable chronic diseases, such as cancer, are fast replacing communicable
diseases in India and other developing countries in terms of occurrence and impact. The
burden of cancer is still an increasing concern worldwide in spite of the advancement of
diagnosis and treatment.[1] Cancer is responsible for about 12.5% of deaths worldwide and
it is estimated that the number of cancer patients with different types of cancer (such as
breast, prostate, lung, uterine and cervical tumours) will be 15 million by 2020.[2,3] Breast
cancer is one of the most common varieties of female cancer worldwide and the disease is
generally supposed to be a major cause of morbidity and mortality in both pre- and
postmenopausal women.[4] Approximately one-third of the breast cancer patients and two-
thirds of postmenopausal breast cancer is estrogen dependent or estrogen receptor posi-
tive.[5,6] The proportion of tumours sensitive to estrogens increases with age and thus
postmenopausal women are more susceptible to developing breast cancers than premeno-
pausal women.[7] The role of estrogens in the development of breast cancer by activating the
transcription factor for cancer cell proliferation has been established in earlier years.[5]

Estrogen is also an issue of concern in male physiology or reproduction, and the
androgen/estrogen ratio is crucial for inducing different conditions such as apoptosis or
ovulation of oocytes.[8] In males, androgen acts as a prohormone for the production of
estrogens in the target cell.[9] Aromatase (estrogen synthetase) controls the androgen/
estrogen ratio in vertebrates intercellularly.[8] Aromatase (CYP19: EC 1.14.14.1) is a
member of the reticulum-bound cytochrome P450 super family. The two main components
of the catalytic complex are the CYP19 enzyme with a crucial iron-binding porphyrin ring
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as a prosthetic group and NADPH–cytochrome P450 reduc-
tase as an electron donor. The main reaction catalysed by
aromatase is the conversion of androstenedione and testoster-
one into estrone and estradiol.[10–12] Aromatase is the main
enzyme responsible for the production of circulating estro-
gens in the peripheral tissue, such as liver, muscle, adipose
and most importantly breast tumour tissue, to stimulate
tumour cells, as estrogen is no longer made in the ovaries after
menopause.[13] The peripheral production of estrogen necessi-
tates the development of aromatase inhibitors for the treat-
ment of breast cancer.[14] Aromatase expression is controlled
by eight tissue specific promoters. In normal breast cells,
promoter I.4 is expressed for transcription whereas aromatase
expression is shifted from promoter I.4 to promoters I.3 and II
in breast cancer cells.[15] Apart from this, recent study indi-
cates that aromatase expression regulation is controlled by
cyclooxygenase (COX)-I and COX-II inhibitors in SK-BR-3
breast cells.[16] Two main strategies have been applied most
frequently for the treatment of estrogen-sensitive breast
cancers. The first one is to block estrogen synthesis with
inhibitors of aromatase and the other is the application of
anti-estrogens to ameliorate the growth effects of estrogens on
tumors.[17] Thus suppression of estrogen biosynthesis by aro-
matase inhibition represents an effective approach for the
treatment of hormone-sensitive breast cancer.[18] Depending
upon the chemical structure, aromatase inhibitors are
grouped into steroidal (Type I) and non-steroidal (Type II)
categories.[19–21] Differences in the modes of action of the two
types of aromatase inhibitors are due to structural difference.
The steroidal inhibitors produce irreversible inhibition by
competing with the natural substrate for the active site of the
enzyme (they act as false substrates and are processed to
intermediates that bind irreversibly to the active site), whereas
non-steroidal inhibitors produce reversible inhibition forming
a coordinate bond with the heme iron (in the case of non-
steroidal inhibitors, the coordinate bond is strong but revers-
ible; the activity is regained after removal of the inhibitor from
the active site).[14] The most important feature of the aromatase
inhibitors is the coordination of the ligand with the iron atom
of the heme moiety. In the case of steroidal inhibitors, the C19
methyl hydrogens coordinate with the heme moiety.[22] Over
the past two decades, several steroidal (exemestan, formes-
tane) and non-steroidal (anastrozole, letrozole) aromatase
inhibitors have been developed and widely used as first-line
drugs in breast cancers.[23–25] Several analogues of natural
androstenedione have been found to have potent aromatase
activity.[26–28] Long-term clinical use of aromatase inhibitors
produces different adverse effects. Therefore, development of
potent selective steroidal aromatase inhibitors is one of the
major challenges in this century.[29–30]

The recently solved crystal structure of placental aro-
matase enzyme (pdb code 3EQM) allows us to study the
critical interactions at the active site of the enzyme with the
inhibitors.[31] Different docking studies were done on the theo-
retical 3D model of aromatase (e.g. pdb code 1TQA).[32–36]

A few quantitative structure–activity relationship (QSAR)
studies have also been reported on selected classes of aro-
matase inhibitors.[37,38]

The binding characteristics and interactions of steroidal
aromatase inhibitors in the active site, as well the properties

important for binding (electronic, hydrophobic and steric fea-
tures), are required to be explored in designing more selective
aromatase inhibitors. In connection with our previous study
with non-steroidal aromatase inhibitors,[39] we have performed
here a molecular docking study followed by QSAR analysis
taking spatial, thermodynamic and structural descriptors and
selected topological parameters using a series of androstene-
dione analogues to explore the important properties of potent
aromatase inhibitors.[26,40–44] The novelty of this work is that
we have used the recently solved crystal structure of placental
aromatase enzyme (pdb code 3EQM)[31] for molecular
docking in this study and the results obtained from docking
have been cross-checked with QSAR studies.

Materials and Methods

The dataset
The inhibitory activity of a series of androstenedione ana-
logues towards human CYP19 reported in the literature[26,40–44]

has been used as the model data set for this study (Figure 1,
Table 1). The inhibitory potencies of the compounds (IC50
(nm)) have been converted to the logarithmic scale (pIC50
(mm)) and then used for subsequent QSAR analyses as the
response variable.

Molecular docking
The crystal structure of human placental aromatase cyto-
chrome P450 in complex with androstenedione (EC:
1.14.14.1, 3EQM.pdb)[31] has been obtained from the RCSB
protein data bank (http://www.pdb.org). The enzyme is
co-crystallized with androstenedione, protoporphirin IX con-
taining Fe3+ and phosphate ion. We performed the docking
studies by using the LigandFit of Receptor-ligand interactions
protocol section of Discovery Studio 2.1.[45] Initially there was
a pretreatment process for both the ligands and the enzyme
(aromatase). For ligand preparation, all the duplicate struc-
tures were removed and the options for ionization change,
tautomer generation, isomer generation, Lipinski filter and 3D
generator have been set true. For enzyme preparation, the
whole enzyme was selected and hydrogen atoms were added
to it. The pH of the protein was set in the range of 6.5–8.5.
Then we defined the aromatase enzyme as the receptor and the
active site was selected based on the ligand binding domain of
bound ligand androstenedione. Then the pre-existing ligand
(androstenedione) was removed and freshly prepared ligand
(compound from the dataset in Figure 1) prepared by us was
placed. Then from the receptor–ligand interaction section
LigandFit was chosen. We used the pre-processed receptor
and ligand as inputs. ‘Dreiding’ was selected as the energy
grid. The conformational search of the ligand poses was per-
formed by the Monte Carlo trial method. Torsional step size
for polar hydrogen was set at 10. The docking was performed
with consideration of electrostatic energy. Maximum internal
energy was set at 10 000 Cal. Pose saving and interaction
filters were set as default. Fifty poses were docked for each
compound. During the procedure of docking, no attempt
was made to minimize the ligand–enzyme complex (rigid
docking). After completion of docking, the docked enzyme
(protein–ligand complex) was analysed to investigate the type
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R1 R= methyl  2 R = ethyl
3 R= n-propyl  4 R = n-butyl
5 R= n-pentyl  6 R = n-hexyl
7 R= n-heptyl

15 X=CH3  16 X=Cl  17 X=Br
18 X=I  19 X=CH3 6-oxo

20 X=CH3  21 X=Cl
22 X=Br        23 X=I

24 X=CH3  25 X=Cl
26 X=Br  27 X=I

28 X=CH3  29 X=Cl
30 X=Br  31 X=I

32 6-beta
33 6-alpha

36 2,2-dimethyl  37 2,2-dimethyl-19-ol
38 2,2-dimethyl-19-one  39 2-beta-methyl
40 2-alpha-methyl  41 2-alpha-methyl-19-ol
42 2-alpha-methyl-19-one

54 R1=CH3, R2=CH3

55 R1=CH2OH, R2=CH3

56 R1=CH3, R2=(CH2)2CH3

57 R1=CH3, R2=(CH2)4CH3

58 R1=CH3, R2=Ph

  8 R= methyl    9 R= ethyl
10 R=n-propyl 11 R=n-butyl
12 R=n-pentyl 13 R=n-hexyl
14 R=n-heptyl

51 R= methyl  52 R = ethyl
53 R=propyl

44 R= 2-alpha-F   45 R =2-alpha-Cl
46 R=2-alpha-Br  47 R=2-alpha-CH2CH3

48 2-alpha-OH  49 2-alpha-OCH3

50 2-alpha-OCH2CH3

Figure 1 Structures of androstenedione analogues.
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of interaction. Ten docking poses saved for each compound
were ranked according to their dock score function. The pose
(conformation) having the highest consensus dock score was
selected and analysed to investigate the type of interaction.

Validation of the docking process
Validation is the essential part of docking studies. For valida-
tion purposes we removed the pre-existing co-crystallized
ligand and a 3D model of the ligand was freshly prepared
and energy minimized. After that we docked the energy-
minimized ligand and compared the binding site of pre-
existing co-crystallized ligand and that of the freshly prepared
ligand. These steps were performed to determine whether the
docked ligand bound with the same amino-acid residues, as it
got bound in the crystal structure of the enzyme, or bound
differently to the enzyme.

Descriptors for QSAR
The analyses were performed using spatial (radius of gyra-
tion, Jurs descriptors, area, PMI-mag, density, Vm), thermo-
dynamic (LogP, ALogP, ALogP98, MR, Molref) and
structural (MW, hydrogen bond donor, hydrogen bond accep-
tor, chiral centers, No. of rotatable bonds) and topological
descriptors, including E-state descriptors. For the calculation
of 3D descriptors, multiple conformations of each molecule
were generated using the optimal search as a conformational
search method. Each conformer was subjected to an energy
minimization procedure using smart minimizer under open
force field (OFF) to generate the lowest energy conformation
for each structure. The charges were calculated according to
the Gasteiger method. All the descriptors were calculated
using Descriptor+ module of the Cerius2 version 4.10 soft-
ware running on a Silicon Graphics workstation.[46] Defini-
tions of all descriptors can be found in the Cerius2 tutorial
(available at http://www.accelrys.com). The terms that appear
in the reported QSAR equations are explained in the Results
and Discussion section. It may be mentioned here that the
QSAR studies were carried out independently of the observa-
tions made in the docking study. No parameters obtained from
the docking experiment were used as inputs for the QSAR
study. Lists of important 2D and 3D descriptors are given in
Tables S1 and S2 in the Supplementary Materials section.

QSAR model development
To begin the model development process, the data set (n = 59)
was classified into clusters by using k-means cluster based on
standardized topological, thermodynamic and structural
descriptor matrix.[47] The numbers of compounds for the train-
ing and test sets were 44 and 15, respectively. QSAR models
were developed using the training set compounds (optimized
by Q2), and then the developed models were validated (exter-
nally) using the test set compounds. QSAR models were gen-
erated separately for 2D descriptors and 3D descriptors. We
used thermodynamic (physicochemical) descriptors both with
2D and 3D descriptors. Finally we developed QSAR models
taking the combined set of descriptors. The chemometric tools
used for QSAR model development were GFA (genetic func-
tion approximation) and G/PLS (genetic partial least squares).

The GFA technique[48,49] was used to generate a population
of equations rather than one single equation for correlation

Table 1 Observed and calculated inhibitory activity of a series of
androstenedione analogues towards human CYP19 (pIC50)

Series No. pIC50 (mm)

Obsa Calb Calc Cald Cale Calf Calg

Training set
1 3.44 3.16 3.13 3.47 3.31 3.76 3.49
2 3.41 3.64 3.62 3.64 3.61 3.56 3.59
3 3.50 3.77 3.75 3.70 3.68 3.54 3.56
4 3.56 3.68 3.64 3.76 3.73 3.51 3.42
5 3.66 3.57 3.49 3.75 3.69 3.51 3.41
6 3.70 3.43 3.41 3.58 3.52 3.51 3.35
8 3.13 3.14 3.19 3.37 3.31 3.68 3.55
9 4.38 3.63 3.71 3.50 3.49 3.56 3.66

10 4.00 4.01 4.08 3.56 3.62 3.60 3.72
11 3.60 3.92 3.97 3.88 3.79 3.57 3.74
14 3.64 3.49 3.61 3.72 3.55 3.53 3.68
15 3.77 3.31 3.25 3.54 3.41 3.24 3.14
17 2.85 3.10 3.03 2.61 2.60 2.90 2.9
19 2.66 2.48 2.55 2.31 2.46 3.01 3.24
21 3.02 2.97 2.92 3.10 2.98 2.93 2.85
22 3.00 3.12 3.07 2.87 2.85 2.69 2.66
23 2.26 2.44 2.46 2.52 2.51 2.34 2.23
24 3.52 3.05 3.07 3.51 3.34 3.25 3.24
25 3.12 2.69 2.69 2.87 2.73 3.02 3.09
26 2.85 2.84 2.85 2.65 2.58 2.82 2.91
27 2.22 2.15 2.24 2.33 2.33 2.40 2.45
28 3.44 3.08 3.11 3.73 3.56 3.10 3.07
31 2.33 2.21 2.30 2.54 2.38 2.26 2.19
32 3.96 3.84 3.99 3.49 3.71 3.80 4.07
34 3.24 3.31 3.28 3.46 3.45 3.78 3.37
36 4.05 3.72 3.70 3.47 3.42 4.10 3.79
37 2.29 2.73 2.87 2.73 2.48 2.70 2.74
38 3.22 3.03 3.18 3.18 3.30 2.72 3.40
42 1.92 2.56 2.58 2.66 2.82 2.04 2.64
45 2.85 3.19 3.11 3.04 3.00 3.26 2.97
46 2.66 3.34 3.27 2.68 2.75 3.00 2.72
47 3.32 3.63 3.56 3.29 3.27 3.51 3.30
48 1.82 2.02 1.95 1.54 1.38 2.07 1.46
49 1.93 2.36 2.29 2.36 2.35 2.12 2.24
50 2.22 2.61 2.51 2.38 2.30 2.33 2.24
51 2.75 2.51 2.60 2.31 2.42 2.67 2.74
52 2.35 2.46 2.53 2.50 2.55 2.38 2.77
53 2.26 2.38 2.41 2.57 2.58 2.22 2.66
54 3.18 2.93 2.70 2.80 2.84 2.52 2.78
55 2.44 1.96 1.78 2.18 2.02 2.45 1.92
56 2.82 3.15 2.89 2.94 2.91 2.71 2.84
57 2.75 2.91 2.79 2.79 2.67 2.97 3.03
58 3.20 2.60 3.13 3.06 3.02 3.52 3.30
59 2.62 2.75 2.67 2.99 3.05 2.76 2.78
Test set

7 3.37 3.29 3.32 3.36 3.29 3.42 3.26
12 3.85 3.8 3.81 3.95 3.83 3.53 3.80
13 3.81 3.65 3.72 3.88 3.74 3.53 3.77
16 3.10 2.95 2.88 2.84 2.75 3.13 3.11
18 2.39 2.39 2.42 2.28 2.39 2.55 2.44
20 3.80 3.33 3.29 3.71 3.55 3.30 3.04
29 2.88 2.72 2.74 3.06 2.88 2.88 2.76
30 2.68 2.87 2.89 2.85 2.67 2.64 2.61
33 4.00 3.84 3.99 3.65 3.82 3.77 4.06
35 3.15 3.61 3.63 3.50 3.60 3.45 3.65
39 3.60 3.26 3.20 3.38 3.36 3.69 3.36
40 3.24 3.26 3.20 3.33 3.33 3.69 3.24
41 1.96 2.26 2.24 2.24 2.13 2.02 2.09
43 3.26 3.32 3.27 3.72 3.59 3.53 3.38
44 3.01 2.93 2.83 2.94 2.77 2.96 2.47

aObserved CYP19 inhibitory activity;[26,40–44] bcalculated from Equation 1; ccalcu-
lated from Equation 2; dcalculated from Equation 3; ecalculated from Equation 4;
fcalculated from Equation 5 (equation not shown); gcalculated from Equation 6
(equation not shown).
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between biological activity and properties. GFA involves the
combination of multivariate adaptive regression splines
(MARS) algorithm with genetic algorithm to evolve a popu-
lation of equations that best fit the training set data. It provides
an error measure, called the lack of fit (LOF) score, that
automatically penalizes models with too many features. It also
inspires the use of splines as a powerful tool for non-linear
modelling. A distinctive feature of GFA is that it produces a
population of models (e.g. 100), instead of generating a single
model, as do most other statistical methods. The range of
variations in this population gives added information on the
quality of fit and importance of the descriptors.

The genetic partial least squares (G/PLS) algorithm[50,51]

may be used as an alternative to a GFA calculation. G/PLS
is derived from two QSAR calculation methods: GFA and
partial least squares (PLS). The G/PLS algorithm uses GFA
to select appropriate basis functions to be used in a model
and PLS regression as the fitting technique to weigh the
basis functions’ relative contributions in the final model.
Application of G/PLS thus allows the construction of larger
QSAR equations while still avoiding overfitting and elimi-
nating most variables.

Statistical qualities of QSAR models and
model validation
The statistical qualities of the equations were judged by the
parameters such as squared correlation coefficient (R2) and
variance ratio (F) at specified degrees of freedom (df).[52] For
G/PLS equations, least-squares error (LSE) was taken as an
objective function to select an equation, while lack-of-fit
(LOF) was noted for the GFA-derived equations. The gener-
ated QSAR equations were validated by leave-one-out cross-
validation R2 (Q2) and predicted residual sum of squares
(PRESS)[53–55] and then were used for the prediction of enzyme
inhibitory potency values of the test set compounds. The pre-
diction qualities of the models were judged by statistical
parameters such as predictive R2 (R2

pred), squared correlation
coefficient between observed and predicted values of the test
set compounds with (r2) and without (r0

2) intercept. It was
previously shown that use of R2

pred and r2 might not be suffi-
cient to indicate the external validation characteristics.[56]

Thus, an additional parameter rm
2
(test) (defined as

r r r2 2
0
21× − −( ) ), which penalizes a model for large differ-

ences between observed and predicted values of the test set
compounds, was also calculated. Two other variants[57,58] of rm

2

parameter, rm
2
(LOO)

[59] and rm
2
(overall), were also calculated. The

parameter rm
2
(overall) is based on prediction of both training

(LOO prediction) and test set compounds. It was previously
shown[58] that rm

2
(LOO) and rm

2
(test) penalize a model more strictly

than Q2 and R2
pred, respectively. Another parameter Rp

2

( R R R Rp r
2 2 2 2= × − ) ( Rr

2 being squared mean correlation

coefficient of random models) was also calculated[58] to check
that the models thus developed were not obtained by chance.

Results and Discussion

Membership of the compounds in different clusters generated
using k-means clustering technique is shown in Table S3 in

the Supplementary Materials section. The test set size was set
to approximately 25% of the total data set size[60] and the test
set members are shown in Table 1.

Molecular docking
To obtain an insight into the interactions between the human
placental aromatase enzyme and its inhibitors and to explore
the binding modes, a docking study was performed using the
LigandFit tool available in Discovery Studio 2.1. The
docking study indicated that all the androstenedione ana-
logues bind in a similar fashion in the same binding mode.
The important amino acids in the active site cavity (within
4Å) were Arg115, Asp309, Ser478 and Thr310 (polar amino
acids) and Ala306, Ala307, Ile133, Ile305, Leu477, Met374,
Phe134, Phe221, Trp224, Val369, Val370 and Val373 (non-
polar amino acids) and this observation is in agreement with
previous reports.[36,39,61] The reliability of the docking proce-
dure was indicated by the low RMSD value (0.56Å)
obtained between the bound ligand in the crystal structure
and computationally freshly prepared docked ligand
(Figure 2).

The amino acids responsible for important interactions
with the ligands within the active site are Met374, Arg115,
Ile133, Ala306, Thr310, Asp309, Val370, Leu477 and
Ser478. All the compounds (high and low activity) form at
least one hydrogen bond with Met 374. But the difference in
the inhibitory activity between different compounds depends
on the steric clashes of the compounds in the active site with
important amino-acid residues as well as most importantly
with the iron atom of the heme moiety. In the case of the
most active compound in the dataset (compound 9), it was
observed that the17-keto oxygen forms two hydrogen bonds
with the amide backbone of Met374 and one of the NH
groups of Arg115 at a distance of 1.696 Å and 2.459 Å,
respectively (Figure 3). A few steric clashes were observed
between the ligand (compound 9) with amino acids such as
Ser478, Phe221 and Val373.

Figure 2 Superimposition of docked ligand and bound ligand (andros-
tenedione) in the active site of human aromatase enzyme.
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In the case of another analogue in the high activity range
(compound 36), the 17-keto oxygen forms a hydrogen bond
with the amide group of Met374 at a distance of 1.846 Å,
while two steric bumps with Leu477 and Thr310 residues
were observed (Figure 4). It was observed for both the com-
pounds (9, 36) that the 2b-hydrogen is close to Asp309 and
orientation of the residue in that position facilitates enzyme
acid–base-catalysed enolization process to selectively remove
the 2b-hydrogen.[62]

In the case of the least active compound in the series
(compound 48), the 17-keto oxygen group forms a hydrogen

bond with the -NH group of Met374 at a distance of
2.088 Å and a steric bump with Val373 (Figure 5). The unfa-
vorable steric interactions occur with Thr310, Phe134 and
Val370. The introduction of an -OH group at the C2 posi-
tion changes the orientation of the molecule in such a
fashion that a lot of unfavourable steric interactions with the
heme moiety were observed, leading to decreased inhibitory
activity.

Compound 37 is structurally closely related to com-
pound 36, although the former compound showed poor
inhibitory activity. One of the C19 methyl hydrogens is
replaced with an -OH group in compound 37. Similarly to
other compounds, the 17-keto oxygen of compound 37
forms a hydrogen bond with the amide backbone of Met374
at a distance of 1.864 Å (Figure 6). Steric bumps were
observed with residues such as Leu477, Ala306, Ile133 and
Thr310. The introduction of an -OH group at one C19
methyl hydrogen leads to detrimental interaction with the
heme moiety, in turn leading to poor inhibitory activity. It
was also observed that introduction of electronegative
groups (-I, -Cl, -Br) at one of the C19 methyl hydrogens
(e.g. 27, 16 and 17, respectively) changes the orientation of
the molecules in the active site and produces unfavourable
interactions with the iron atom of the heme moiety (data not
shown).

Apart from the hydrogen bond formation with the
17-keto oxygen present on the cyclopentano ring system,
other parts of the molecules are stabilized by hydrophobic
interactions with the non-polar amino acids (Ala306,
Trp224, Val369, Val370, Ile133, Phe134). This is in agree-
ment with our previous observations with non-steroidal aro-
matase inhibitors.[39]

Figure 3 Docked conformation of compound 9 along with the impor-
tant amino acid residues of human placental aromatase. Green dashed line
indicates hydrogen bond formation; magenta dashed line indicates bump
formation with amino acid residues.

Figure 4 Docked conformation of compound 36 along with the impor-
tant amino acid residues of human placental aromatase. Green dashed line
indicates hydrogen bond formation; magenta dashed line indicates bump
formation with amino acid residues.

Figure 5 Docked conformation of compound 48 along with the impor-
tant amino acid residues of human placental aromatase. Green dashed line
indicates hydrogen bond formation; magenta dashed line indicates bump
formation with amino acid residues.
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The most important criterion for potent and selective
inhibitors of CYP19 is coordination of the ligand with the iron
atom of the heme moiety.[63] It has been reported in the litera-
ture that the C19 methyl hydrogens bind with the heme group
within 4 Å distance. In our docking results for highly active
compounds, the distance from the C19 methyl hydrogens to
the heme group was within 4 Å. For the least active com-
pounds (48, 37), it was evident that the C19 methyl hydrogens
were far away from the heme group or there were steric
clashes with heme group.

Modelling with 2D descriptors
The following two equations (1 and 2) were among the best
ones obtained from the GFA (5000 iterations) and G/PLS
(1000 crossovers, linear terms, scaled variables and other
default settings), respectively. Both linear and linear spline
terms were used for development of the models.

pIC
ALogP

50 = − ±( ) − ±( ) < −
> − ±

1 565 1 040 0 976 0 114 4 453
98 0 482 0

. . . . .
. .0085 3 084 0 0622

2 694 0 563 0 266
( ) + ±( )

− ±( ) < − >
S sI JX

S ssssC nT

_
_

. .
. . . rraining

LOF R R F df
Q

=
= = = = ( )

44
0 176 0 732 0 704 26 59 4 392 2

,
. , . , . , . , ,a

22 2 2

2

0 648 0 482 15 0 847
0

= = = =
=

( )

( )
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The standard errors of regression coefficients are given within
parentheses. Equation 1 could explain 70.4% of the variance
(adjusted coefficient of variation) while it could predict 64.8%
of the variance (leave-one-out predicted variance). The differ-
ence between R2 and Q2 values is not very high (<0.3).[64]

When the equation was used to predict the CYP19 inhibition
potency of the test set compounds, the predicted R2 (R2

pred)
value was found to be 0.847. The rm

2 values for the test,
training and overall sets were found to be 0.779, 0.482 and

0.529, respectively. The relative importance of the descriptors
according to their standardized regression coefficients is in
the following order: <4.453 - ALogP98> > S_sI > JX > <
S_ssssC - 0.266>.

The term <4.453 - ALogP98> with negative regression
coefficient indicates that the value of ALogP98 should be
more than 4.453 for good inhibitory activity. ALogP98
(measure of hydrophobicity) is an atom-type-based LogP
method using the published set of parameters.[65] The mag-
nitude of this descriptor decreases with an increase of polar
atoms in the molecule. It was observed that compounds such
as 3, 5, 6, 10, 11, 14, 32 and 36 with ALogP98 values
greater than 4.453 showed better inhibitory activity than
compounds with lower ALogP98 values (compounds 37, 48,
55). It was observed that introduction of the polar groups
(=O, -OH) (as in compounds 19, 37, 48, 55) decreased the
ALogP98 value and these compounds showed poor inhibi-
tory activity. This observation was supported by our docking
study, which suggested that the compounds in the active site
cavity are stabilized by hydrophobic interactions with the
non-polar amino acids (Ala306, Trp224, Val370, Ile133,
Phe134).

The next term with negative contribution is the E-state
index of the fragment -I (S_sI). Only three compounds (23,
27, 31) in the training dataset had this fragment and they
showed poor inhibitory activity. The position of the fragment
-I is at C19. The docking study indicated that the presence of
the group at this position produces an unfavourable interac-
tion with the heme moiety by changing the orientation of the
molecules in the active site. Therefore, docking results and
QSAR-model-derived observations were in close agreement
with each other.

The Balaban J index (JX), which characterizes the shape of
the molecule based on covalent radii, is defined as follows:

J
q

V VDi Dj=
+ ∑μ 1

. .

In this equation, i and j are the adjacent vertices, q is the
number of edges, m represents the number of cycles (i.e. m = 0
for linear graphs) and VDi and VDj are the average distance
sum of the vertex i and j, respectively.

The positive coefficient of the term indicates that com-
pounds (such as 9 and 10) with high values of the parameter
have higher inhibitory activity than compounds (53, 56, 57)
with low values of JX. It was observed that the value of JX
decreased as the number of rings increased and the inhibitory
potency of these compounds (like compound 58) was also
lower.

The term < S_ssssC - 0.266 > with negative coefficient
indicates that for optimal inhibitory activity the value of the

E-state index of fragment C (S_ssssC) should be less

than 0.266. Compounds 51, 52 and 53, with S_ssssC values
greater than 0.266, showed poor inhibitory activity. Com-
pounds 9, 10, 11, 14, 28, 32 and 36, with S_ssssC values less
than 0.266, showed good inhibitory activity. Compounds such
as 19, 21, 31, 37, 42, 48 and 55 showed poor inhibitory
activity due to low values of ALogP98 in spite of their low
S_ssssC value.

Figure 6 Docked conformation of compound 37 along with the impor-
tant amino acid residues of human placental aromatase. Green dashed line
indicates hydrogen bond formation; magenta dashed line indicates bump
formation with amino acid residues.
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The relative order of importance of the descriptors
is: <4.453 - ALogP98> > JX > <2.505 - S_sI> > <25.007 -
S_dO> > <SC_3P - 66>. The statistical quality of Equation 2
is listed in Table 2 along with that of other models.

The terms <4.453 - ALogP98> and JX have negative and
positive regression coefficients in Equation 2, similarly to
Equation 1.

The E-state index of the fragment -I (S_sI) should be less
than 2.505 for good inhibitory activity as the term
<2.505 - S_sI> shows positive contribution towards the activ-
ity. Similar observation was made also in equation 1 for the
term S_sI.

The term <25.007 - S_dO> has negative impact on the
inhibitory activity. This indicates that the E-state index of
the fragment =O (S_dO) should be greater than 25.007 for the
desired biological activity. Compounds like 51, 52, 53 and 55
have relatively small values of S_dO and significantly lower
inhibition potential than compound 32 having a high value of
S_dO. It may be mentioned here that the docking study
showed that the 17-keto oxygen of the ligands is responsible
for the formation of a hydrogen bond with Met374. However,
compounds like 19, 38 and 42 with S_dO values greater than
25.007 showed poor inhibitory activity due to low values of
ALogP98.

The values of number of third-order subgraphs in a
molecular graph (SC_3P) should be less than 66 for higher
inhibitory activity as the term <SC_3P - 66> has a positive
coefficient. Compounds like 3, 4, 9, 10, 11, 15, 24 and 36 with
SC_3P values less than 66 showed a better inhibitory activity
than compounds 37, 57 and 58 with higher values of SC_3P.

Modelling with 3D descriptors
The following two equations (Equations 3 and 4) were among
the best ones obtained from the GFA (5000 iterations) and
G/PLS (1000 crossovers, scaled variables and other default
settings), respectively. Both linear and linear spline terms
were used for development of the models.
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15
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. , . , . (3)

The relative importance of the descriptors according
to their standardized regression coefficients is in the
following order: Jurs_RNCG > PMI_mag > <- 26.205 -
Jurs_PNSA_3> > Jurs_FPSA_1 > LogP. The standard errors
of regression coefficients are given within parentheses.

The negative coefficient of Jurs_RNCG indicates that it is
detrimental to the inhibitory potency. The relative negative
charge (RNCG) is defined as the partial charge of the most
negative atom divided by total negative charge in the follow-
ing manner: Jurs_RNCG = Q-

max/Q-, where Qmax
− is the charge

of the most negative atom and Q- is the total negative charge.
Compounds like 17, 26, 27, 48, 51, 52, 53 and 59 showed

poor inhibitory activity due to high values of Jurs_RNCG. It
was observed that the introduction of electronegative groups
like -Br (compounds 17, 26), -I (27) or -OH (48) increased
the value of Jurs_RNCG and contributed to poor inhibitory
activity, supporting the docking result. On the other hand,
compounds 5, 6 and 14 with low values of Jurs_RNCG
showed good inhibitory activity.

The principle moment of inertia (PMI_mag) has a detri-
mental effect on the inhibitory activity. PMI_mag is the
moment of inertia, resultant of the moment of inertia of three
axes, which are calculated for a series of straight lines through
the centre of mass. Compounds like 1, 15, 24 and 28 with low
values of PMI_mag showed better inhibitory activity than
compounds 57 and 58 with high values of PMI_mag. But it is
not true that all compounds with low values of the parameter
have high activity: it was observed that compounds 51 and 59
showed poor inhibitory activity due to high values of
Jurs_RNCG.

Jurs_PNSA_3 is the atomic charge weighted
negative surface area and is calculated as
Jurs PNSA q SAa aa

_ _3 = − −
−∑ . ( SAa

− = atomic solvent acces-
sible surface area of all negatively charged atoms and
qa

− = charge of overall negatively charged atoms). It is evident
that this parameter is mainly governed by the total negative
charge of the molecules. The negative coefficient of the term

Table 2 Comparison of statistical qualities of different models

Descriptor Chemometric tool Equation No. R2 Q2 R2
pred rm

2
(test) rm

2
(LOO) rm

2
(overall)

2D + Thermodynamic GFA 1 0.732 0.648 0.847 0.779 0.482 0.529
G/PLS 2 0.758 0.705 0.826 0.799 0.674 0.710

3D + Thermodynamic GFA 3 0.763 0.673 0.850 0.836 0.498 0.547
G/PLS 4 0.754 0.653 0.864 0.825 0.616 0.666

Combined GFA 5 (not shown) 0.756 0.691 0.759 0.657 0.516 0.537
GFA 6 (not shown) 0.772 0.728 0.825 0.789 0.547 0.585

The best values of different metrics are shown in bold print. GFA, Genetic function approximation; G/PLS, genetic partial least squares.
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<- 26.205 - Jurs_PNSA_3> indicates that when Jurs_
PNSA_3 has a value less negative than 26.205, it has detri-
mental effect on the inhibitory activity. Thus the absolute
numerical value of Jurs_PNSA_3 should be more than 26.205
for optimal inhibitory activity. Compounds like 9, 11, 14, 34,
36 and 47, having absolute numerical values of Jurs_PNSA_3
more than 26.205, showed good inhibitory activity while
compounds like 19, 31, 42 and 48 with absolute values of
Jurs_PNSA_3 less than 26.205 had poor inhibitory activity.
As the parameter Jurs_PNSA_3 depends on the negatively
charged atoms, the presence of an additional keto group at the
6 position (compound 19) , -I, -CHO groups at the C19
position (compound 31, 42) and -OH group at the 2 position
(compound 48) decreased the inhibitory activity.

Jurs_FPSA_1 (fractional charged partial positive surface
area) is obtained by dividing sum of the solvent-accessible
surface areas of all positively charged atoms by the total
molecular solvent-accessible surface area as follows:

Jurs FPSA
Jurs PPSA

SASA
_ _

_ _
1

1= ,

where Jurs PPSA SAaa
_ _1 = +

+∑ is the sum of the solvent
accessible surface areas of positively charged atoms.

Compounds with higher Jurs_FPSA_1 values had detri-
mental effect on the inhibitory potency. For example, com-
pounds 51, 52, 53, 55 and 57, having high values of
Jurs_FPSA-1, had less CYP19 inhibitory activity.

The n-octanol/water partition coefficient (LogP) has a
positive impact on the inhibitory activity as indicated by the
positive regression coefficient. LogP is related to the hydro-
phobic character of the molecule. Compounds (like 5, 9, 10,
11, 14, 15, 32 and 36) with high LogP value showed good
inhibitory activity, while those (e.g. compounds 27, 42, 48, 49
and 50) with lower values had poor inhibitory activity. This
observation is supported by our docking study, which sug-
gests that the compounds in the active site cavity are stabilized
by hydrophobic interactions with the non-polar amino acids
(Ala306, Trp224, Val370, Ile133, Phe134).

Equation 3 was found to be statistically significant with
explained variance of 73.1% and leave-one-out predicted vari-
ance of 67.3%. When the equation is applied on the test set of

compounds, the R2
pred value was found to be 0.850. Statistical

significance of the model was also indicated by rm
2 parameters

listed in Table 2.
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The relative order of importance of the descriptors
according to the standardized regression coefficient
is: Jurs_RNCG > <- 0.050 - Jurs_FNSA_3> > PMI_mag > <
174.887 - Jurs_PNSA_1> Jurs_FPSA_2 > LogP. Equation 4
was found to be statistically significant according to the inter-
nal and external validation parameters as listed in Table 2.

In Equation 4, the terms Jurs_RNCG, PMI_mag with
negative coefficient and LogP with positive coefficient show
similar results as in Equation 3.

The negative coefficient of the term <- 0.050 - Jurs_
FNSA_3> indicates that the absolute value of Jurs_FNSA_3
should be more than 0.050 for ideal aromatase inhibitors. For
example, compounds 2, 3, 4, 5, 6, 9 and 10 with absolute
Jurs_FNSA_3 values more than 0.050 showed good inhibitory
activity, while compounds like 19, 21, 23, 27, 31, 42 and 48,
having absolute Jurs_FNSA_3 values less than 0.050, showed
inferior inhibitory activity.

The partial negative charge surface area (Jurs_PNSA_1) is
the sum of solvent accessible surface areas of all negatively
charged atoms and is derived from the following equation:

Jurs PNSA SAaa
_ _1 = −

−∑ , where the sum is restricted to
negatively charged atoms a-. The value of Jurs_PNSA_1
should be less than 174.887 for optimum inhibitory activity as
the term <174.887 - Jurs_PNSA_1> bears a negative regres-
sion coefficient. Compounds 23, 27 and 31 with Jurs_
PNSA_1 values more than 174.887 showed poor inhibitory
activity.

The results of the developed QSAR models with different
combination of descriptors are listed in Table 2. As the quali-
ties of the models developed with 2D and 3D descriptors in

Table 3 Randomization results for process of model development and developed models

Type of model Chemometric tool Equation no. Process randomization Model randomization

at 90% confidence level at 99% confidence level

R2 Rr
2 Rp

2 R2 Rr
2 Rp

2

2D + Thermodynamic GFA 1 0.732 0.177 0.545 0.732 0.073 0.594
G/PLS 2 0.758 0.379 0.466 0.758 0.008 0.657

3D + Thermodynamic GFA 3 0.763 0.127 0.608 0.763 0.110 0.617
G/PLS 4 0.754 0.397 0.451 0.754 0.002 0.654

Combined GFA 5 0.756 0.195 0.566 0.756 0.076 0.624
GFA 6 0.772 0.158 0.605 0.772 0.078 0.643

The best value of the Rp
2 metric in each type of randomization test is shown in bold face. GFA, Genetic function approximation; G/PLS, genetic partial

least squares.
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combination (Equations 5 and 6, not shown) were not superior
to the models developed from 2D and 3D descriptors sepa-
rately, the former equations are not described here. A com-
parison among various models shows that Equation 2 based
on 2D descriptors shows the best internal validation charac-
teristics while Equations 3 and 4 based on 3D descriptors are
better than the 2D models in external validation characteris-
tics. However, based on the rm

2
(overall) criterion, Equation 2 is

the best one. Scatter plots of the observed vs calculated/
predicted values of the training/test set compounds are shown
in Figure S1 in the Supplementary Materials section.

The results of process and model randomization tests are
shown in Table 3. The process randomization results of the
G/PLS derived models (Equations 2 and 4) do not fulfill the
required criterion of Rp

2 (the values being less somewhat
lower than 0.5), although Rp

2 values for the model random-
ization are above the recommended cut off value. Based on
the results on randomization tests, the GFA-derived Equation
3 is found to be more reliable than the other reported
equations.

Overview and Conclusions

To explore the binding characteristics and important interac-
tions of aromatase inhibitors in the active site, docking studies
were carried out taking the crystal structure of human placen-
tal aromatase enzyme (pdb code: 3EQM).[31] In addition,
QSAR studies were carried out taking spatial, thermody-
namic, structural and topological descriptors to find out the
properties of interest for ideal inhibitors. For the QSAR study
the whole dataset (n = 59) was divided into training (n = 44)
and test (n = 15) sets by k-means clustering techniques. The
docking study indicates the presence of polar (Arg115,
Asp309, Ser478, Thr310) and non-polar (Ala306, Ala307,
Ile133, Ile305, Leu477, Met374, Phe134, Phe221, Trp224,
Val369, Val370, Val373) amino acids in the active site. The
important interacting amino acids were Met374, Arg115,
Ile133, Ala306, Thr310, Asp309, Val370, Leu477 and Ser478.
All the compounds form at least a single hydrogen bond with
the amide backbone of the amino acid Met374. During the
docking study, the positions of the steroidal nucleus found to
be important were C19 and C2, supporting previously pub-
lished reports.[31,39] It was observed that introduction of -OH
or halogens at one of the methyl hydrogens or a -CHO group
at C19 position changes the orientation of the molecules
leading to unfavourable interactions with the heme moiety.
This was also corroborated by the QSAR study. Both docking
and QSAR studies indicate that hydrophobicity is an impor-
tant determinant of the aromatase inhibitory activity. The
developed QSAR models indicate the importance of different
Jurs parameters (Jurs_FNSA_3, Jurs_PNSA_3, Jurs_F-
PSA_2, Jurs_RNCG, Jurs_FPSA_1, Jurs_PNSA_1), thermo-
dynamic parameters (ALogP98, LogP), topological branching
index (SC_3P), JX and E-state index for different fragments
(S_sI, S_ssssC, S_dO), which are in close agreement with our
previous study.[39] Modelling with both 2D and 3D descriptors
indicates the importance of hydrophobicity and its optimal
range for ideal aromatase inhibitors. The -I fragment at posi-
tion C19 produces unfavourable molecular orientation of the
ligands in the active site and in the QSAR study it shows

detrimental effect on the inhibitory activity. The majority of
the Jurs descriptors indicate the importance of electronegative
hetero atoms in the molecules and their limiting range. It was
evident that introduction of more negative atoms changes the
polarity of the molecules and finally reduces the hydropho-
bicity, leading to poor inhibitory activity. The G/PLS models
with 2D and 3D descriptors were found to be the best model
according to internal and external validation statistics, respec-
tively (Equation 2: Q2 = 0.705, Equation 4: R2

pred = 0.864). The
best model among the comparable models based on the r2

m

(overall) criterion was the G/PLS model with 2D descriptors
(Equation 2: r2

m (overall) = 0.710). The results of the randomiza-
tion test indicate the models were not obtained by chance.
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